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Abstract—One of the resources used in anomaly detection on
log data is graph based approaches. Connections between adja-
cent log entries, co-occurrence of attributes, and other relations
can be easily represented using graphs. In this paper, using a
state-of-the-art (SOTA) graph based anomaly detection method,
we reproduce and show the limitations on publicly available log
data. Then we introduce a novel method, MIMC, that improves
on the detection rates without causing a considerable loss in the
overall performance. In order to evaluate the performance of
MIMC, we perform experiments over the same datasets used in
SOTA. The results indicate that MIMC has merit as a graph-
based anomaly detection system over different types of log data.
We believe that this is an important achievement on the road to
building an unsupervised and online approach.

Index Terms—Graph based approaches, micro-clustering,
anomaly detection, log analysis.

I. INTRODUCTION

Networks and services are, commonly, targets of a myriad of
cyber attacks including, but not limited to, distributed denial
of service, code injection and data exfiltration. Attacks like
these can result in financial losses to businesses and, possibly,
the extraction of personal or sensitive data by the hands of
malicious actors. For that reason, businesses have invested
increasingly more in solutions for detection and prevention
of these kinds of attacks [1]. Solutions that make use of pre-
existing processes or data tend to spark more interest given that
they require less service disruption in order to be implemented.
One such kind of process that is commonly in place by most
businesses is the capture and collection of logs.

Logs are used in networks and services to describe actions
being performed by the system. They can be used to register
attempted actions by a user, specific routines being called
within the code, or describe the state of the system. Capturing
logs is an essential tool for debugging, monitoring, and im-
proving systems, and therefore it is commonly implemented.
Attempting to detect attacks using log information is not new.
Considering that logs describe the actions being performed

on a system, detecting an attack is analogous to finding
anomalous actions being performed. This concept is usually
studied under the area of anomaly detection [2].

One of the resources used in anomaly detection on log data
is graph based approaches [3]. Connections between adjacent
log entries, co-occurrence of attributes, and other relations can
be easily represented using graphs. These representations can,
then, be analyzed for the presence of cliques, paths, subgraphs,
among others, which are the foundation of some graph-based
anomaly detection techniques [4].

In this work, using a state-of-the-art (SOTA) graph based
anomaly detection method [5], we replicate the evaluations of
the SOTA system using the same datasets in order to under-
stand the wider context and identify any potential limitations.
Based on the replication studies results, we introduce a novel
method, MIMC, that improves on the detection rates without
causing a considerable loss in the overall performance.

The remainder of the paper is organized as follows: section
II summarizes the related work on graph based anomaly
detection. Section III describes the SOTA method that is
reproduced. Section IV introduces the proposed novel method,
MIMC. Section V presents the evaluations and results. Finally,
conclusions are drawn and the future work is discussed in
section VI.

II. RELATED WORKS

Our work is closely related to the areas of log analysis and
anomaly detection on log data – in particular, graph-based
approaches for anomaly detection. In the following, we give
an overview of the related works in the area.

The work of Noble & Cook [3] proposes two methods for
graph-based anomaly detection making use of a method for
detecting recurring substructures in graphs, namely Subdue.
When tested over the 1999 KDD Cup data, the methods show
reasonable results in identifying some of the attacks, albeit
having extremely poor performance for other attacks.



The solution presented in Kurniawan et. al. [6], namely
VloGraph, makes use of existing knowledge sources to con-
nect logs and information collected a priori into a knowledge
graph. This graph is, then, available for analysis using a query
language, SPARQL, in order to retrieve events of interest.

The use of high-order networks compared to first-order
networks for anomaly detection is explored by Saebi & Xu
et. al [7]. Their work shows that first-order networks are not
as effective as high-order networks when detecting high-order
anomalies.

Kulkarni et. al. [8] explore the patterns found by creating
different kinds of graphs over insider trading data. These
include networks of traders, purchases, and sales of stocks.
Furthermore, they explore the idea of anomaly detection using
hyper-graphs, reaching the conclusion that, given the complex-
ity of the domain, it is hard to evaluate the performance of their
model. However, they are able to confirm that the hyper-edges
identified as anomalies (insider trading) do, in fact, result in
profit for the trader in majority of the cases.

Moreover, Mongiovi et. al. proposed NetSpot [9] for finding
anomalous regions on dynamic networks. These include traffic
networks, social networks, or knowledge networks. They show
that NetSpot is up to one order of magnitude faster than an
exhaustive search approach and yielding results within 5%.

He at. al. [10] analyzed six methods for anomaly detection
using log data: three supervised and three unsupervised. The
three supervised methods were based on Logistic Regres-
sion, Decision Trees, and Support Vector Machines (SVM).
The three unsupervised methods include Clustering, Prin-
cipal Component Analysis, and Invariant Mining. In terms
of accuracy, SVM achieved the highest F-Measure among
the supervised methods. Out of the unsupervised methods,
Invariant Mining was the one with the highest F-Measure.

In the work of Uno et. al. [11], we see an introduction to the
problem of micro-clustering as unsupervised soft-clustering.
Here, the problem is clustering highly-related entries as op-
posed to highly-dense ones. They propose a methodology
called data polishing, to reduce the number of yielded clusters
while maintaining the high relation between entries.

On the other hand, Farzad and Gulliver [12] propose a
method for unsupervised anomaly detection in system logs.
They employ an Isolation Forest algorithm and two deep
Autoencoder networks. When evaluated over system logs from
machines such as Blue-Gene II and Thunderbird, the proposed
method outperforms comparable techniques such as Gaussian
Mixture Model and One-Class Support Vector Machine.

In [13], Zhang et. al. introduce LogRobust, an anomaly
detection technique that uses an extracted semantic vector
to represent each log entry. It is argued that, by doing so,
the method remains robust against anomalous events not
previously observed in training / historical data.

LogBERT, introduced in the work of Guo et. al. [14], makes
use of BERT to run a self-supervised training to learn normal
sequences of log masks, that is, masks yielded by a log
abstraction process. Sequences of masks that do not match
the trained normal sequences are deemed anomalous.

As we can see, there is a clear preference for unsupervised
methods given that they don’t require prior training and, as
such, don’t require a training sample of data. Methods relying
on machine learning models tend to be unfriendly when it
comes to performing root-cause analysis over an incident.
Graph-based methods are easier to analyze and, in most cases,
provide a reasonable level of explainability to any flagged
anomalies. The use of language models, albeit promising,
relies on the semantic value of log entries which may not
always be intended for readability. Therefore, in our work, we
aim to develop an unsupervised, and online method that makes
use of graph representations of data to detect anomalies in log
data.

III. MICRO-CLUSTER ANOMALY DETECTION

In anomaly detection, presenting potential anomalies in the
form of outliers as separate micro-clusters is informative to
human experts in many real world applications. Several recent
works in the literature have leveraged micro-cluster based
anomaly detection [15], [16]. We have employed MIDAS [5]
as a representative of the state-of-the-art (SOTA) in micro-
cluster based anomaly detection. MIDAS is an online method
for detecting micro-cluster anomalies, that is, rapidly arriving
groups of similar edges in a dynamic graph. This is particularly
useful for detecting events such as distributed denial of service
attacks (DDoS) in network traffic data. It works by processing
incoming network packets as directed edges between the
packet’s source IP and destination IP and feeding them into
a dynamic graph. By keeping track of the frequency of each
edge, MIDAS makes use of a chi-squared test in order to yield
an anomaly score, which is increasingly higher for edges that
are considered part of a micro-cluster anomaly.

Given the online nature of MIDAS, there is an inherent
concern for processing time and memory use. The method
solves that by making use of a data structure named Count-
Min Sketch (CMS) [17], which makes use of sublinear space
to store event frequency approximation while maintaining fast
retrieval times.

A. Reproducing SOTA methodology

The state-of-the-art methodology we employed – MIDAS
– is run over a series of detection experiments on annotated
datasets [5]. In order to facilitate the reproduction of these
experiments, we have used the publicly available implemen-
tation of the method1. The annotated datasets used in those
experiments include:

1) DARPA: The 1999 DARPA intrusion detection dataset
[18] is a well-known dataset for testing intrusion detection
systems. It consists of, approximately, 4.5M packets being
exchanged between 25K hosts over a period of nine weeks
containing a multitude of attacks including, but not limited to,
dictionary attacks, ftp-write and port scans.

Before being fed into the algorithm, the dataset was, first,
formatted into a list of Source IP / Destination IP relations

1https://github.com/Stream-AD/MIDAS



accompanied by the packet timestamp. In this case, the IP
addresses will be the nodes on the dynamic graph, while the
edge will represent the occurrence of a communication be-
tween them. Each entry – timestamp, source IP, destination IP
– is, then, fed into the algorithm individually and its anomaly
score recorded. The final performance is given in terms of the
area under the receiver operating characteristic curve (ROC-
AUC). Given the randomized nature of the CMS data structure,
the SOTA technique proposes that each experiment be repeated
21 times, and that the reported result be the median score of
these. We follow their proposal in our experiments in order to
correctly replicate the SOTA.

For the experiment with the DARPA dataset, the perfor-
mance reported was 0.9873 median ROC-AUC with a standard
deviation of 0.0009. In our reproduction, we achieved a similar
0.9845 median ROC-AUC with a standard deviation of 0.002.

Besides reproducing the experiment with the full DARPA
dataset, we also performed the same experiment with its
subdivisions (partitions). The dataset is originally separated
into a Training and a Testing partitions. The training partition
contains data from seven weeks of capture, while the testing
partition includes two weeks of capture. Each week is also
divided into five weekdays (Monday to Friday).

We ran the experiment for each partition of the dataset (all
entries under Training, then all entries under Testing), for each
week individually, and for each weekday. These experiments
with the smaller subdivisions yielded results that ranged from
1% to 99.9% ROC-AUC. This shows that the SOTA method-
ology could take a considerable hit in performance if it is used
with on specific scenarios represented by smaller datasets. This
aspect is explored further in this research.

2) CTU-13: The CTU-13 dataset [19] is a dataset of botnet
traffic captured by the CTU University in Czech Republic. It
consists of 13 distinct scenarios of botnet traffic, representing
different forms of malicious behaviour. Each of the provided
scenarios can be used individually or be combined. Due to the
focus on microcluster anomalies, this experiment was run over
the combined set of entries of scenarios 4, 10, and 11 of the
CTU-13, which are the scenarios containing DDoS attacks.
This set contains 2.5M packets being exchanged between
371K hosts. Given the data is provided in the form of raw
packets, we took a similar approach to the DARPA experiment
(albeit not fully described in [5]) and formatted each packet
into a tuple: timestamp, source IP, and destination IP.

In this experiment, the performance reported was 0.9843
median ROC-AUC, with a standard deviation of 0.0004. In
our reproduction, we achieved the same 0.9843 median ROC-
AUC, although with a slightly higher standard deviation of
0.0005. We suspect this might be due to the formatting of the
tuples. For this dataset, we run the same experiment over the
individual scenarios, as opposed to a combination of them.
This is similar to the process of running the experiments over
the different partitions of the DARPA dataset. In the case of the
CTU-13 dataset, both scenarios 10 and 11 yield, respectively,
a median ROC-AUC of 0.9937 and 0.9957. In the meantime,
scenario 4 yields a median ROC-AUC of 0.6170 and standard

deviation of 0.0124, which is considerably lower than the
previous experiments.

This decrease in performance is not easily explained con-
sidering all three scenarios have packets from similar sources
– all covering DDoS attacks – and only scenario 11 has a
considerably smaller number of entries than the other two
scenarios.

3) UNSW-NB15: The UNSW-NB15 dataset [20] was cap-
tured at the University of New South Wales and contains nor-
mal traffic data as well as synthetic modern attack behaviour.
It contains approximately 2.5M records including, but not
limited to, packets for DDoS attacks, backdoor attacks, and
fuzzer attacks. This dataset is made available in four partitions.

As with the previous experiments, we formatted the dataset
as tuples of timestamp, source IP address, and destination
IP address. During this experiment we encountered, for the
first time, a situation where some of the anomaly scores
achieved by the SOTA were inf, that is, a value too high to
be represented or simply infinity. In this case, the ROC-AUC
could not be properly calculated as it does not support infinite
values. As a workaround, we extracted the raw scores for each
record and replaced all instances of inf with a value higher
than every other (usually 1B). This allowed us to calculate an
approximate ROC-AUC.

The performance reported for these experiments was 0.8517
median ROC-AUC with a standard deviation of 0.0013. In
our reproduction, we achieved a similar 0.8710 median ROC-
AUC with a standard deviation of 0.0002. Like in the pre-
vious experiments, we also ran the experiment for each one
of the partitions of the dataset individually. These yielded,
respectively, 0.7654, 0.9732, 0.7556, and 0.7244 median ROC-
AUC. For the third and fourth partitions we also encountered
the issue with the inf values. These experiments show how
the distribution of normal/anomalous records considerably
influences the final result of micro-clustering performed and
achieved by the SOTA methodology.

IV. PROPOSED MODEL: MULTIPLE INSTANCES OF
MULTI-CLUSTER

As seen in section III-A, the micro-clustering approach
yields a good performance for the experiments conducted from
a macro perspective on the datasets. However, once we have
a deeper look at the reproduced results (of the SOTA) over a
micro perspective, we notice that this performance can take a
considerable hit on different scenarios (partitions) of the same
datasets. With that in mind, our objective is to improve upon
these results given that one of the aims of micro-clustering
approaches is to be able to focus on rapid changes on specific
situations that might be encountered on different systems.

To this end, we propose, Multiple Instances of Multi-
Cluster (MIMC). In the aforementioned experiments, the
micro-clustering approach only makes use of the source IP
address and destination IP address of each packet, even
though other meta-data is available. With MIMC, we propose
to enhance this property without deviating from the micro-
clustering approach, given that the meta-data is available in



Fig. 1: Flowchart of the proposed approach MIMC

the log files. Moreover, we introduce the concept of parallel
instances of micro-clustering to be able to focus on different
aspects of the data. Lastly, we introduce different strategies
to be able to combine the multiple instances of micro-cluster
anomaly detection to calculate an overall anomaly score for
the analyst.

Firstly we propose the use of alternative attributes (pa-
rameters) such as source port and destination port for the
micro-clustering. Overall evaluations of the SOTA method-
ology using these attributes yields a ROC-AUC of 88.85%
for the DARPA dataset, 98.58% for the CTU-13 dataset,
and 78.19% for the UNSW-NB15 dataset. For these and the
experiments performed over the specific scenarios (partitions)
of the datasets, the results show that using source port and
destination port indicate similar or better performance (higher
ROC-AUC) under certain conditions, while a decrease in the
performance (ROC-AUC) under particular partitions.

Secondly, given that our goal is to improve the anomaly
scores generated by each experiment with the objective of im-
proving the overall performance, MIMC runs parallel instances
of micro-clustering with different sets of attributes. Thirdly,
they are combined using different strategies for calculating
the anomaly scores. These are then used to calculate the ROC-
AUC score as the SOTA method does over its set of scores.
This process is illustrated in figure 1.

In this work, we analyze the impact of MIMC in the
performance by combining the scores yielded using Source
IP Address and Destination IP Address, as well as Source
Port and Destination Port, using three distinct combination
strategies over concurrent instances:

• Max: For the same entry, keep the highest of the scores.
• Min: For the same entry, keep the smallest of the scores.
• Avg: For the same entry, calculate the average of the

scores.

V. EVALUATIONS AND RESULTS

In order to test the performance of MIMC, we ran exper-
iments over the aforementioned datasets used by the SOTA
method as seen in section III. We then compared their per-
formances for detecting anomalies over multiple scenarios
(partitions) of the available data using the three aforemen-
tioned combination strategies – max, min, and avg. For each
case compared, we classified it as an improvement if the
yielded ROC-AUC was higher or equal to its counterpart
reported in the literature, comparable, if the ROC-AUC was
within 5 points percentual below the counterpart, or a decline,
otherwise. In the following figures black coloured regions rep-
resent improvements, darker grey coloured regions represent
comparable regions and light grey coloured regions represent
decline performance. White coloured regions represent the
parts of the data with no anomaly.

A. DARPA

For the DARPA dataset, we start by comparing the perfor-
mance of both techniques over each of the five weekdays of
each of the seven weeks present in the training partition of
the dataset. Two of the days in this partition do not include
anomalous entries, so their ROC-AUC is not calculated neither
for SOTA nor for MIMC. When using the max combination
strategy, as seen in figure 2, MIMC achieves 29 improvements,
4 comparable results, and 0 declines. For the min combination
strategy, as seen in figure 3, MIMC achieves 20 improvements,
12 comparable results, and 1 decline. For the avg combination
strategy, as seen in figure 4, MIMC achieves 29 improvements,
4 comparable results, and 0 declines.

Next, we compare the performance of both techniques over
each of the five weekdays of each of the two weeks present in
the testing partition of the dataset. For the max combination
strategy, as seen in figure 5, MIMC achieves 9 improvements,
1 comparable results, and 0 declines. For the min combination
strategy, as seen in figure 6, MIMC achieves 8 improvements,
2 comparable results, and 0 declines. For the avg combination
strategy, as seen in figure 7, MIMC achieves 10 improvements,
and 0 comparable results or declines.

Following that, we combine all the data available of each
weekday to make partitions for each of the seven training
weeks on the dataset. While this provides us direct comparion
to SOTA methodology, it also enables us to study macro
(all) versus micro (specific) focus on the data. For the max
combination strategy, as seen in figure 8, MIMC achieves 7
improvements, and 0 comparable results or declines. For the
min combination strategy, as seen in figure 9, MIMC achieves
2 improvements, 5 comparable results, and 0 declines. For the
avg combination strategy, as seen in figure 10, MIMC achieves
7 improvements, and 0 comparable results or declines.

We, then, identify the partitions for each of the two testing
weeks on the dataset. For the max combination strategy,
as seen in figure 11, MIMC achieves 1 improvement, 1
comparable, and 0 decline result. For the min combination
strategy, as seen in figure 12, MIMC achieves 1 improvement,
0 comparable, and 1 decline result. For the avg combination



Fig. 2: Comparison between MIMC us-
ing the max combination strategy and
SOTA over DARPA training weekdays

Fig. 3: Comparison between MIMC us-
ing the min combination strategy and
SOTA over DARPA training weekdays

Fig. 4: Comparison between MIMC us-
ing the avg combination strategy and
SOTA over DARPA training weekdays

Fig. 5: Comparison between MIMC us-
ing the max combination strategy and
SOTA over DARPA testing weekdays

Fig. 6: Comparison between MIMC us-
ing the min combination strategy and
SOTA over DARPA testing weekdays

Fig. 7: Comparison between MIMC us-
ing the avg combination strategy and
SOTA over DARPA testing weekdays

strategy, as seen in figure 13, MIMC achieves 1 improvement,
1 comparable, and 0 decline result.

When analyzing the entire training partition, SOTA method
achieves 99.33% ROC-AUC, whereas MIMC achieves – for
the max, min, and avg strategies respectively – 99.28%,
98.79%, and 99.32%. All are comparable results. For the en-
tire testing partition, SOTA method achieves 93.45%, whereas
MIMC achieves 93.35% and 89.64% for the max and min
strategies respectively – which are comparable results – and
93.53% for the avg strategy, which is an improvement result.
Finally, when comparing the performance over the entire
dataset, SOTA method achieves 98.43% ROC-AUC (as seen
previously), whereas MIMC achieves 97.82%, 97.33%, and
97.95% for the max, min, and avg strategies, respectively.
These fall under comparable results.

B. CTU-13

As seen in section III-A, the performance of SOTA method-
ology over the individual scenarios of the CTU-13 dataset
(as opposed to the combination of them) showed that the
performance over scenario 4 was not as high as scenarios 10
and 11. To further analyze and improve the performance over
these individual scenarios, we run MIMC over each one with
the three aforementioned combination strategies. As seen in
table I, MIMC is able to improve the performance of every

ROC-AUC
Technique Scenario 4 Scenario 10 Scenario 11 All

SOTA 62.06% 99.35% 99.62% 98.43%
MIMC (max) 62.45% 99.33% 99.62% 98.39%
MIMC (min) 68.82% 99.51% 99.30% 98.74%
MIMC (avg) 62.39% 99.35% 99.61% 98.42%

TABLE I: Comparison between performances of SOTA and
MIMC over scenarios 4, 10, and 11, and their combination of
CTU-13 dataset. Bold values represent improvements

scenario with at least one technique. Scenario 4, especially,
gets an improvement of over 6 points percentual with the min
strategy. All other results fall under comparable results.

C. UNSW-NB15

Our experimentation with the SOTA methodology showed
that the performance of Partition 2 of the UNSW-NB15
dataset was considerably higher than the other three parts.
To further analyze and improve the performance over these
individual scenarios, we ran MIMC over each one with the
three aforementioned strategies. As seen in table II, MIMC
shows improvement in particular over Partition 4 as well as for
the entire dataset using the min combination strategy. Besides
that, it shows 4 comparable and 5 decline results.



Fig. 8: Comparison between MIMC us-
ing the max combination strategy and
SOTA over DARPA training weeks

Fig. 9: Comparison between MIMC us-
ing the min combination strategy and
SOTA over DARPA training weeks

Fig. 10: Comparison between MIMC us-
ing the avg combination strategy and
SOTA over DARPA training weeks

Fig. 11: Comparison between MIMC us-
ing the max combination strategy and
SOTA over DARPA testing weeks

Fig. 12: Comparison between MIMC us-
ing the min combination strategy and
SOTA over DARPA testing weeks

Fig. 13: Comparison between MIMC us-
ing the avg combination strategy and
SOTA over DARPA testing weeks

ROC-AUC
Technique Part 1 Part 2 Part 3 Part 4 All

SOTA 76.99% 97.33% 75.56% 72.44% 87.66%
MIMC (max) 54.57% 97.33% 64.83% 72.51% 83.77%
MIMC (min) 75.29% 94.40% 68.52% 75.46% 89.74%
MIMC (avg) 63.03% 97.33% 67.00% 74.23% 85.94%

TABLE II: Comparison between performances of SOTA and
MIMC over partitions 1 to 4, and their combination of UNSW-
NB15 dataset. Bold values represent improvements

VI. CONCLUSION & FUTURE WORK

In this work, we analyzed a SOTA graph-based methodol-
ogy for detecting multi-cluster anomalies in log data using
publicly available MIDAS. Based on the performance of
SOTA, we proposed a novel method, MIMC, that makes use
of (i) enhancing attributes, (ii) executing multiple instances
of micro-clustering over different attributes of the log in
parallel, and (iii) combining these multiple instances of micro-
cluster anomaly detection with an appropriate strategy. In order
to evaluate the performance of MIMC, we ran experiments
over the same datasets used in SOTA and compared the
results. Under many scenarios, we observed an improvement
by MIMC in performance over the results yielded by SOTA
when experimenting with specific scenarios (partitions) of the
datasets. This is achieved by MIMC without getting a hit on

the performance when evaluating with the entire datasets. It
should be noted here that SOTA evaluations were done over
the entire datasets. In summary, this demonstrates that the
results obtained by the proposed method MIMC have merit
in the area of graph-based anomaly detection over different
types of log data. The impact seems to focus on scenarios and
partitions where the data is sparse and therefore makes it more
challenging to differentiate normal vs anomaly for SOTA.
This indicates that the steps proposed in MIMC improve the
reliability of detection on scenarios where data is in short
supply. We believe that this is an important achievement on
the road to building an unsupervised and online approach. The
exploration of using other attributes and using more instances
of multi-cluster identification are the next steps for future
research directions.
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